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Summary
The constitutive equations for viscoplasticity typically are stiff differential equations and
require special numerical methods to intergrate them efficiently. The objective of this paper is
to propose a class of rate-dependent viscoplastic constitutive equations which can be integrated
by an efficient explicit scheme that includes the first order effect of pressure and plastic strain
hardening.

INTRODUCTION

The strength of many geological materials and some metals exhibits a high sensitivity to the
plastic strain and the pressure. To produce stable results for these materials using the
constitutive equations for viscoplasticity may require implicit integration. We propose a class
of rate-dependent viscoplastic constitutive equations which can be integrated by an efficient
explicit scheme that includes the first order effect of hardening. To model the dynamic
response of material, the system of equations representing the mass, momentum and energy
conservation laws is supplemented by the following equation for the unimodular tensor of
elastic distortional deformation B [1].

B=LB+BLT--(D*I)B-F B-" 31 (l)
3 PL B-I .I

Using B, the deviatoric stress T’ can be expressed as T’ = G p(1 - ~--------~) (B - ~(B * I)), where G 
P0

the shear modulus, P0 and p are the initial and the current density and ̄  is the reference
porosity. In (1), 17, specifies the plastic response of the material and is taken to be a function
of the yon Mises effective stress ere and the yield strength Y proposed in [2]:

rFp= Pot-~e-eji," Y0
(2)



In the test problems considered the conservation laws were integrated numerically using the
second order Godunov scheme. More details about the numerical algorithm can be found in
[3].
We focus our attention on integration of Eq.(1) in the case of a general strength model, which
includes a set of softening and hardening effects attributed to different physical phenomena
such as bulking, distortional damage, porosity compaction, tensile failure. We study possible
instabilities cased by these effects in numerical simulation and formulate constrains on the
model parameters to avoid these instabilities.

STRENGTH OF MATERIAL

The physical phenomena that influence the yield strength Y are taken into account using a
multiplicative form with Y given by:

Y = YoF,(4,p)F~(p)F~(~,p)F,(fl, p)F~(p,e) (3)

The fn’st two terms in (3) describe hardening and the last three describe softening effects.

F1 is specified in terms of hardening parameters ~ by the form F1 = 1 + (kl - 1)4, where the value

of kl gives the maximum strain hardening when 4 = 1. The hardening parameter ~ is
determined by an evolution equation of the form

~ = k2[--1(1_ ~)ep (4)
L (p)J

The pressure hardening F2 is typical for rock materials and is due to increased friction between
the grains at compression.

The damage function F3 specified by (6) makes material weak at low pressures p _< P0 once 
is damaged.

1 - ks~2exp[- (P)1F3=
L Po--_l (5)

The damage parameter, ~, used in the function (5) is evaluated using the relation

~2=(’T-T’h) if 4=1 (6)
~da,n Y0

where Tm~ is the most compressive principal stress, Tth is the threshold stress for damage
growth, and "rdam is a characteristic time for damage. The damage begins to accumulate when
the hardening parameter ~ is equal to unity. F4 is a function of the Lode angle and F5 models
the effect of melting at high pressures.



BULKING MODEL

Strong distortional deformations can cause microfracturing that tends to increase porosity in
rock materials. This leads to the build up of the pressure since more volume is occupied by
microcracks. The high pressure, in turn, affects the yield through the hardening term Fz.

The evolution of porosity due to bulking is chosen to be proportional to the rate of plastic
dissipation and is given by Eq.(8) below.

l’l"ldEP(~’e(O* --0)
=(1-¢) Max(p*,p) (8)

The value of ¢* specifies the maximum bulking porosity that can be achieved and the function
md determines the rate of bulking. The plastic strain rate can be expressed in terms of B as

THE SCHEME OF INTEGRATION AND TEST RESULTS

We have modified the scheme of integration of the Eq.(1) developed in [1] accounting for the
plastic strain and the pressure dependence of the yield strength. According to [1] Eq.(1) first
solved without plasticity term to find elastic trial value of B* and corresponding von Mises
stress (re*. Then to satisfy (1) the new values of B can be found as B = AB*, where A is 
scale factor given by (10)

1- A,= AtFpZ
The value of Fp in (10) is taken at the end of the time step.
Substituting (2) into (10) we have 

3rp0 ,_
Z +_.7,~__~__, (O.e/~ _ y)2 = 

i(0 (re

(10)

(11)

The yield strength at the end of the time step used in (11) can be written using serial expansion

as Y= Y* q-(~p/AEp +(~-~)Ap (12)

The increment of the plastic strain during the time step can be expressed in terms of X using
$

(9) and (10) Ace = (1 - ,q,) (13)



The change in the pressure is due to generation of bulking porosity.
roughly proportional to the change in plastic strain as

Ap = KAcp= (1-~p)Kma@* -q))ae AEp (14)
P

So (12) can be written as Y = Y* + A(1 -/2,)
where A can be found from (12)-(14). Thus (11) transforms into 

3Fp0G ¯
/~ -I- ~((ae --I- A)/~ - (Y* + A))2 = 1

/’6 o’e
Solving (16) for 2 we have

According to (8) it 

(15)

(16)

X= /~Yo + +A

l a7+A

where ~= -d, + qd?-4d2d0
24

for a: < Y*

for a: >_ Y*

Y* + A
and do-a: + A

(17)

ff Fpo --> ~ we get a rate-independent case, where 2, can be found as

ty__)l :ora: <Y"

)1, = + A for o’~ > Y* (18)

lO’e +A
Parameter A, in (18) gives well known scale factor used in radial return method when A --~ 

The test results shown below illustrate the behavior of granite in uniaxial strain loading. For
granite the model described above has been used with the initial yield Y0=0.02 GPa. Due to
the plastic strain hardening the yield strength could increase in a factor of 2.
It is seen from fig. 1-2 that introducing correction for plastic strain hardening when calculating
the plastic strain makes a big effect. For rate dependent model this effect is not so big at high
deformation rates (for example in Fig.3 in rate dependent case both curves with and without
correction coincide) but still significant at low deformation rates taking place in big scale events
(see Fig.4).
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Fig. 1 Evolution of von Mises stress and the yield strength in uniaxial strain loading for the
Granite. Rate independent model without (a) and with Co) correction for plastic strain
hardening is used.
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Fig.2 Evolution of the dissipation rate ep O"e in uniaxial strain loading for rate dependent
model with and without correction for plastic strain hardening. The rate of deformation is:
a)1000 (I/s), b) 1. (I/s).

1D IMPACT SIMULATION

The difference in results obtained with and without correction on plastic strain hardening is
noticeable already in 1D plane problems. The Fig.3 show the results of Granite on Granite
impact. It is seen that the shock wave propagates with different velocities in these two cases
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